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1 Introduction

Extremal graph theory emerged and initiated its development in the 1930s and 40s. It deals with maximal and
minimal properties of graphs. The Hungarian mathematician Pál Turán was one of the first to study these
extremal properties of graphs and became known for his Turán’s theorem. Many Hungarian mathematicians
such as P. Erdős, B. Bollobás, V. Sós, and E. Szemerédi have been active researchers in this field since then.

In this paper, we will focus on the earliest yet most fundamental result in extremal graph theory, Turán’s
theorem, proved and published in 1941. First, we will look at Mantel’s theorem, a special case of Turán’s
theorem. Then we will shift our attention to Turán’s theorem itself. The paper will produce several different
proofs for both theorems. We will concentrate on some extensions alongside these two theorems as well. The
properties presented and theorems proved in this paper will help the readers understand how the extremal
graph theory was founded and some of its major techniques and ideas.

2 Preliminaries

In this paper, all graphs are taken as simple graphs. If the letter G is not explicitly defined in the proofs and
the propositions themselves, then we recognize it as the graph G that includes all its vertices and edges.
Triangles refer to K3.

Let G be a graph, and v be a vertex in G. Denote the vertex set of G by V(G), and the edge set of G by
E(G) (sometimes abbreviated as V and E). Denote the number of edges in G by e(G) = |E(G)|. Denote N(v)

as the set of vertices that are adjacent to v. Denote a graph G of order n by Gn. The complement graph of G,
denoted by G, is the graph with the same vertex set as G, but with the edge set complement to the edge set
of G.

A clique is a subset of the vertices of a graph such that its induced subgraph is complete. A k-clique
means that the clique has k vertices.

The degree sequence of a graph is the sequence of the degree of each vertex (usually written in nonin-
creasing order) in the graph.

An independent set of vertices is defined as a set of vertices that are pairwise nonadjacent.

3 Mantel’s theorem

THEOREM 1 (Mantel). A simple graph G with order n with no triangles has at most ⌊n2/4⌋ edges.
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Proof I (from maximality). Suppose v1 is the vertex in G with maximum degree d, and let the vertices that are
the neighbors of v1 be

vn−d+1, vn−d+2, . . . , vn.

Because G doesn’t contain any K3, meaning that any two of the vertices listed above are not neighbors, the
number of edges in G satisfies

e(G) ⩽
n−d∑
i=1

d(vi) ⩽ (n− d)d ⩽
(n− d+ d)2

4
=

n2

4
.

Since e(G) must be an integer, G has at most ⌊n2/4⌋ edges.
To satisfy the equality, vi (i = 1, 2, . . . ,n− d) must not contain any pairwise neighbor, and all of these vi

must be of degree d, which satisfies the equation n− d = d (indicating that d can be either ⌊n/2⌋ or ⌈n/2⌉ as
n might not be even). Since vn−d+1, vn−d+2, . . . , vn do not contain any pairwise neighbor as well, G is a
bipartite graph K⌊n/2⌋,⌈n/2⌉.

As we can see from Proof I, it is possible to open up the proof if we focus on one single vertex, it is worth
the attempt to focus on a pair of vertices that are adjacent to each other and form an edge.

Proof II (induction). The theorem can be verified easily when n = 3 and 4.
Suppose the case is true for n < k (k > 4). Then for n = k, suppose vivj is an edge in G. Since K3 is

not contained in the graph, vi and vj do not have a common neighbor. Thus d(vi) + d(vj) ⩽ n, and vi and
vj have at most n− 1 edges that are incident with either of them. If we remove vi and vj, we get a new
graph with n− 2 vertices, which according to the inductive hypothesis should have at most 1

4 (n− 2)2 edges.
Hence

e(G) ⩽
1

4
(n− 2)2 +n− 1 =

n2

4
.

The equality is satisfied only when d(vi) + d(vj) = n, which means that N(vi)∪N(vj) = V(G). Also note
that both N(vi) and N(vj) should be independent sets since there is no K3 in G.

Keep in mind when n = 3 and 4, G is a bipartite graph K⌊n/2⌋,⌈n/2⌉. For every n ⩾ 5, when n increases
by 2, G will increase the cardinalities of the two independent subsets by 1 respectively. Hence the number of
edges reaches its maximum if and only if G is a bipartite graph K⌊n/2⌋,⌈n/2⌉ (for every n).

The next proof uses the notion d(vi) + d(vj) ⩽ n as well, but this time we expand this inequality to the
whole context and take a more algebraic approach.

Proof III (summation and transformation). As mentioned at the beginning of Proof II, d(vi) + d(vj) ⩽ n is true
for every edge vivj. The inequality ∑

vivj∈E

(
d(vi) + d(vj)

)
⩽ en (1)

follows. Meanwhile the LHS ∑
vivj∈E

(
d(vi) + d(vj)

)
=

∑
v∈V

d2(v). (2)

By the Cauchy-Schwarz inequality, we then have

∑
v∈V

d2(v) ⩾
1

n

(∑
v∈V

d(v)
)2

=
1

n
4e2.
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Combining the above with (1) and (2), we get e ⩽ n2/4, or more precisely.
When n is even, the equality is satisfied if and only if for every edge vivj, d(vi) + d(vj) = n, and for

all v ∈ V , d(v) is the same. We need to be a bit careful when n is odd, since ⌊n2/4⌋ < n2/4. We are then
returned to N(vi) ∪N(vj) = V(G) in Proof 2, and we get the same condition that G reaches its maximum
only when G = K⌊n/2⌋,⌈n/2⌉.

Proof IV takes a more unique approach towards Mantel’s theorem. It intuitively builds up a function and
attempts to obtain the result through an inequality regarding the function. The core step in this proof is the
use of local adjustment, a method applied to solve some complex inequalities. To put it briefly, it shifts some
elements in the function once at a time, which gradually increases or decreases the value of the function.

Proof IV (weight and local adjustment). Let x = (x1, x2, . . . , xn) ∈ Rn be a vector satisfying
∑

xi = 1, with
0 ⩽ xi ⩽ 1 for each i ∈ [n]. Define

f(x) =
∑
ij∈E

xixj.

We first observe that if all xi’s are of weight 1/n, then f(x) = e/n2. This means that there must exist an x that
satisfies f(x) ⩾ e/n2. Note that if ij /∈ E, shifting the weight of xi to that of xj (assuming the total weight of
the neighbors of xj is at least as large as the total weight assigned to the neighbors of xi) will not decrease
f(x), as

xi
∑
pi∈E

xp ⩽ xj
∑
qj∈E

xq. (3)

Repeating the “weight-shifting” procedure described above, it is clear that f(x) may always increase
until all the weights concentrate on a clique (by definition its induced graph is complete). Note there is no
triangles, hence the weights may only concentrate on two vertices. Hence

e

n2
⩽ f(x) ⩽

1

2
· 1
2
=

1

4
, (4)

which tells that e ⩽ ⌊n2/4⌋.

Remark (on Proof IV). The equality is satisfied only when the two “⩽” in (4) reaches equality. Therefore
every shift of weight (3) is (almost) always an equality, which means that every vertex should have a similar
number of neighbors. Yet it is still hard to give the exact equality condition. This is a major drawback of this
last proof.

Remember that in Mantel’s theorem, we ask about the result when there is no triangle in the graph G.
It is equally important in extremal graph theory to explore the result that involves the number of existing
triangles.

Here we introduce notations that will be useful. Denote by kr(G) the number of Kr’s in graph G. Denote
by (di)

n
1 be the degree sequence of graph G with order n. Let adjacent edges be the number of pairs of edges

that share exactly one vertex.
The degree sequence of G is (d̄i)

n
1 = (n − 1 − di)

1
n, and thus on one hand we get

∑n
i=1

(
di
2

)
pairs

of adjacent edges in G and
∑n

i=1

(
n−1−di

2

)
pairs of adjacent edges in G. On the other hand, each of the

k3(G) + k3(G) number of triangles in the two graphs G and G ′ contains three pairs of adjacent edges. The
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remaining number of three-vertices is (
n

3

)
− k3(G) − k3(G),

where each three-vertices contains exactly one pair of adjacent edges. Therefore we have

n∑
i=1

(
di

2

)
+

n∑
i=1

(
n− 1− di

2

)
= 3k3(G) + 3k3(G) +

(
n

3

)
− k3(G) − k3(G).

Now the total number of triangles k3(G) + k3(G)

=
1

2

[ n∑
i=1

(
di

2

)
+

n∑
i=1

(
n− 1− di

2

)
−

(
n

3

)]

=
1

2

n∑
i=1

[
1

2
di(di − 1) +

1

2
(n− 1− di)(n− 2− di)

]
−

1

2

(
n

3

)

=
1

2

n∑
i=1

[
d2
i − di − (n− 2)di +

1

2
(n− 1)(n− 2)

]
−

1

2

(
n

3

)

=

n∑
i=1

(
di

2

)
− (n− 2) · e(G) +

(
1

4
−

1

12

)
n(n− 1)(n− 2)

=

n∑
i=1

(
di

2

)
− (n− 2) · e(G) +

(
n

3

)
, (5)

which should also be equal to
n∑

i=1

(
d̄i

2

)
− (n− 2) · e(G) +

(
n

3

)
(6)

by symmetry. We will now use e and ē to denote the numbers of edges in G and G, respectively.
Formula (5) above (see also [Bol78]) implies a lower bound on the number of triangles, which we will

present here:

THEOREM 2 (Goodman [Goo59; Bol78]). For a graph G of order n, we have k3(G)+ k3(G) ⩾ 1
24n(n− 1)(n−

5).

Proof. Essentially we want to bound (5) from below. By the AM-GM inequality, we know

n∑
i=1

(
di

2

)
⩾ n

(
2e/n

2

)
,
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with “=” when G is an (2e/n)-regular graph. Therefore

k3(G) + k3(G) ⩾ e
(2e
n

− 1
)
− (n− 2)e+

(
n

3

)
=

(
n

3

)
−

2e(n2 −n− 2e)

2n

⩾
1

6
n(n− 1)(n− 2) −

1

8
n(n− 1)2

=
1

24
n(n− 1)(n− 5).

The lower bound is attained only when G is a (2e/n)-regular graph and n2 − n = 4e. Note n2 − n = 4e

means that
n− 1 = 2 · 2e

n
.

We then know that both G and G are (2e/n)-regular graphs. Meanwhile n must be odd. Now given
n(n− 1) = 4e and gcd(n,n− 1) = 1, we have that the lower bound is attained only when n ≡ 1 (mod 4).

There exists a sharper lower bound for the number of triangles. It was first introduced and proved in
[Goo59], and was given a simpler proof (using weighting) in [Sau61].

THEOREM (Goodman refined). For a graph G of order n,

k3(G) + k3(G) ⩾


1
24n(n− 2)(n− 4), if n ≡ 0 (mod 2);
1
24n(n− 1)(n− 5), if n ≡ 1 (mod 4);
1
24 (n+ 1)(n− 3)(n− 4), if n ≡ 3 (mod 4).

Note that the bounds above are sharp for all three cases.

We now present a second theorem on bounding the number of triangles.

THEOREM 3 (Moon and Moser [MM62; Bol78]). A graph G of order n and size e contains at least e
3n (4e−n2)

triangles.

Proof. First we have

3k3(G) ⩽
n∑

i=1

(
d̄i

2

)
(7)

because each triangle contains three adjacent pairs of edges, while each adjacent pair of edges may not be in
the same triangle. With (6) and the above inequality (7) we have

k3(G) ⩾
n∑

i=1

(
d̄i

2

)
− (n− 2)ē+

(
n

3

)
−

1

3

n∑
i=1

(
d̄i

2

)

=
2

3

n∑
i=1

(
d̄i

2

)
− (n− 2)

[(n
2

)
− e

]
+

(
n

3

)

⩾
2

3
n

(
2
[(

n
2

)
− e

]/
n

2

)
− (n− 2)

[(n
2

)
− e

]
+

(
n

3

)
by AM-GM inequality

=
e

3n
(4e−n2)
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after a significant amount of simplification in the final step. The lower bound is attained if and only if G is a
regular graph.

4 Turán’s theorem

Now we turn back to Mantel’s theorem. We will now generalize it from K3 to Kn. The result is known as
Turán’s theorem, which we will focus on for the rest of our paper. Before that we again introduce some
relevant definitions and notations.

Definition. Given a graph G = (V ,E) and a vertex subset S of V , the subgraph of G induced by S, denoted by
⟨S⟩, is an induced subgraph of G with vertex set S and edge set {uv : u, v ∈ S and uv ∈ E}.

For two vertex sets X and Y, e(X, Y) is defined to be the number of edges that have one vertex in X and
another vertex in Y.

If two graphs G and H are isomorphic, we use the notation G ∼= H.
The simple complete k-partite graph on n vertices in which all parts are as equal in size as possible (i.e.,

of sizes ⌈n/k⌉ or ⌊n/k⌋) is called a Turán graph and is denoted by Tk,n. Also denote the number of edges in
Turán graph Tk,n by tk,n = e(Tk,n).

The origin of Turán’s theorem [Sim13] is related to Ramsey theory, which investigates the smallest order of
graph that ensures every 2-coloring of E(G) using red and blue makes G contain either a red Ki or a blue Kj.
Another way of interpreting Ramsey theory is that, assuming graph G of order n contains no i-clique, what
is the greatest j such that a j-independent set must exist in G. In 1941 [Tur41], Turán replaced j-independent
set with the number of edges e(G).

THEOREM 4 (Turán). Let G be a simple graph of order n that does not contain any k-clique (k ⩾ 2). Then
e(G) ⩽ e(Tk−1,n), with “=” if and only if G ∼= Tk−1,n.

Turán’s theorem is the first theorem of the following form:

If Gn contains no subgraph S, then Gn has at most f(n) edges.

Problems of this form become known as the Turán type problems in graph theory (see [EG59; Dir63]). The
f(n) can be denoted by ex(n,S), where S may be a single forbidden graph (such as the k-clique Kk in Turán’s
theorem), or a family of forbidden graphs. Some famous problems of this type include Zarankiewicz problem
[Zar51] (which considers the bipartite graph) and the even circuit theorem [Erd65] (which considers the cycle).

As marked by Turán in his original paper, we can restate Theorem 4 by replacing e(Tk−1,n) with

1

2

(
1−

1

k− 1

)
(n2 − r2) +

(
r

2

)
,

where r is the smallest positive integer that satisfies n ≡ r (mod k− 1). To see why this is true, consider
Figure 1.

By the definition of r, there are k− 1− r parts of n−r
k−1 vertices and r parts of

(
n−r
k−1 + 1

)
vertices. First, we

remove the additional r vertices (at the top) and see all parts to be of n−r
k−1 vertices. This means that Tk−1,n

contains
(
k−1
2

)(
n−r
k−1

)2 edges, since every time we may pick two columns of vertices and form
(
n−r
k−1

)2 edges,
and we need to repeat this for

(
k−1
2

)
number of times. Second, we look at how the additional r vertices form

edges with the existing n− r vertices. Each vertex from these additional r vertices is connected to the (k− 2)
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part 2part 1 part r

the rest k− 1− r parts

...
...

...
...

...

· · ·

· · ·

· · ·

Figure 1: explicit upper bound on the number of edges in Turán’s theorem

parts, whence there are an additional r(k− 2)n−r
k−1 edges. Third, we know that the additional r vertices give(

r
2

)
new edges within themselves. Hence in total we have

1

2

(
1−

1

k− 1

)
(n2 − r2) +

(
r

2

)
(8)

number of edges.
We remark that the number of edges is maximized with value (k−2)n2

2(k−1) when (k− 1) | n, i.e., r = 0. We
may replace the e(Tk−1,n) with this expression, but this is weaker than the original Turán’s theorem.

The first proof of Turán’s theorem is the the most known one. It looks at the vertex with the maximum
degree in G (maximal properties often bring out interesting results in combinatorics). It uses induction that is
simpler than the one that will be used in the second proof that comes later. Before that we present a lemma.

LEMMA 5. The complete k-partite graph on n vertices with the largest number of edges is the Turán graph
Tk,n.

Proof. Let the number of vertices in each of the k parts be p1,p2, . . . ,pk. Then the number of edges in the
graph will be ∑

1⩽i⩽j⩽k

pipj =
1

2

[( k∑
i=1

pi

)2

−

k∑
i=1

p2i

]
. (9)

Cauchy-Schwarz inequality tells us that

n

k∑
i=1

p2i ⩾

( k∑
i=1

pi

)2

= n2. (10)

with “=” when p1 = p2 = · · · = pk.
Plugging (10) back into (9), we see the number of edges is less than or equal to 1

2 (n
2 −n), and achieves

this maximum when all parts of the k-partite graph are of the equal size. As n might not be divisible by k, it
is not hard to claim that only when the size of each part is either ⌊n/k⌋ or ⌈n/k⌉ (as equal in size as possible)
will the total number of edges be maximized. We do not write the full detail here.

We are now ready to prove Turán’s theorem.

Proof I of Turán’s theorem, modified upon [Zyk49; BM08]. Obviously the theorem holds for k = 2. Assume it
holds for all integers less than k, and consider G that does not contain a k-clique. Choose the vertex x of
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maximum degree ∆ in G, and set X = N(x) and Y = V −X. It is easy to see that

e(G) = e(X) + e(X, Y) + e(Y).

Since G does not contain any Kk, ⟨X⟩ does not contain any Kk−1. (If not, the additional vertex x and the
Kk−1 in ⟨X⟩ will form a Kk in G.) Therefore by the inductive hypothesis we obtain

e(X) ⩽ e(Tk−2,∆)

with equality only when ⟨X⟩ ∼= Tk−2,∆. Note that each edge incident with vertices in Y belongs to E(X, Y)
and E(Y), which implies that

e(X, Y) + e(Y) ⩽ ∆(n−∆),

with equality only when Y is an independent set and all vertices of Y is of degree ∆. Therefore e(G) ⩽ e(H),
where H is the combination of Tk−2,∆ and an independent set with n−∆ vertices, each of which is connected
to all the ∆ vertices in X. We see that H is a complete (k− 1)-partite graph on n vertices. By Lemma 5, we
know that e(H) ⩽ e(Tk−1,n), with equality if and only if H ∼= Tk−1,n. Therefore we get e(G) ⩽ e(Tk−1,n),
with equality if and only if G ∼= Tk−1,n.

The next proof is from Turán’s original paper. It uses a completely different method from Zykov’s proof
above. It uses induction, which results from a meticulous observation that every additional k− 1 verteics
will be individually distributed into the existing k− 1 parts of vertices, according to the definition of Turán
graph.

Observe that Theorem 4 obviously holds for n ⩽ k− 1, if we allow empty sets in the partition. Also note
that if the graph G that contains no Kk has the maximal number of edges, it must have at least one Kk−1.
(Say a new edge ℓ is added to G so that the new graph G ′ now contains Kk, then removing ℓ from Kk gives
us two Kk−1.)

Proof II, modified upon Turán’s proof [Tur41; Aig95]. Suppose the theorem holds for graphs of order less than
n, where n ⩾ k− 1. Let G be the graph of order n with the maximum number of edges. Let A be the vertices
of a (k− 1)-clique in G and let B be V −A. It follows that |B| = n− k+ 1.

Since G has no k-clique, every vertex in B has at most k− 2 adjacent vertices in A. If we maximize the
number of edges in ⟨B⟩ and simultaneously let every vertex in B adjacent to exactly k− 2 vertices in A, then
the number of edges in G is maximized. Also note that all the vertices of each (k− 1)-clique in B must not
have the same neighbor in A, or there will be a Kk in G.

We can only realize the condition above with the following arrangement. By the inductive hypothesis let
B = Tk−1,n−k+1 and add a distinct vertex of A to each of the k− 1 parts of B. The resulting graph is exactly
Tk−1,n.

By induction we know that if and only if G ∼= Tk−1,n will the number of edges in G be maximized.

An immediate consequence of Turán’s theorem is the upper bound on the minimum degree of G, denoted
by δ(G).

COROLLARY 6 ([Bol78]). If Gn does not have Kk as a subgraph, then δ(Gn) ⩽ k−2
k−1n.
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Proof. By the weak version of Turán’s theorem on page 7, we know that e(Gn) ⩽
(k−2)n2

2(k−1) . It follows that

n · δ(Gn) ⩽
∑
v∈V

d(v) = 2e(Gn) ⩽
(k− 2)n2

k− 1
,

which gives the desired bound.

Turán’s theorem determines a bound on the number of edges, but it also yields bounds to the clique
number, the chromatic number, and the independence number, which are defined as follows for a graph G.

Definition. The clique number, denoted by ω(G), is the order of the largest complete graph that is a subgraph
of G.

The chromatic number, denoted by χ(G), is the minimum integer such that G is χ(G)-colorable.
The independence number, denoted by α(G), is the largest size of an independent set of vertices in G.

THEOREM 7 (lower bounds on ω(G),χ(G), and α(G) [Wes01]). For a graph G of order n and size e, it follows
that ω(G) ⩾

⌈
n2

n2−2e

⌉
, χ(G) ⩾

⌈
n2

n2−2e

⌉
, and α(G) ⩾

⌈
n2

n+2e

⌉
.

Proof. From the weaker version of Turán’s theorem we know that e ⩽
(
1− 1

ω(G)

)
· n2

2 , which gives a lower
bound on the clique number:

ω(G) ⩾
⌈ 1

1− 2e
n2

⌉
=

⌈ n2

n2 − 2e

⌉
=: p.

For the bound above to be sharp, we need the number of edges e in G to be at least
(
p
2

)
and Tp,n to have at

least e edges. With these two conditions, we can remove edges from Tp,n and get a graph G of order n and
size e such that χ(G) = ω(G) = p.

Let ē = e(G) =
(
n
2

)
− e. Then α(G) = ω(G) ⩾ n2

n2−2ē
= n2

n+2e .

Remark. Turán’s theorem is related to vertex coloring problems. The Turán graph is the solution to finding
the graph with the maximum number of edges that avoid needing k colors for vertices: every part in the
Turán’s graph may be colored with one distinct color. This is an opposite problem to finding the chromatic
number, which means we need to find the smallest number of colors that give a proper coloring to the graph.

5 Extensions and alternative proofs of Turán’s theorem

For the final section we will explore some extended properties between partite graphs, cliques, and extremal
properties of a graph. These results will lead to two alternative proofs of Turán’s theorem.

The third proof of Turán’s theorem requires a nicely formulated result on the degree sequence on k-partite
graphs, provided by Erdős.

THEOREM 8 ([Erd70; Bol78; Sim13]). Let G be a graph of order n and vertex set V = {x1, x2, . . . , xn} (where
the vertices are indexed in ascending degrees) that contains no Kp. Then there exists a (p− 1)-partite graph
G ′ [which is a (p− 1)-chromatic graph] with vertex set V ′ = {x ′

1, x ′
2, . . . , x ′

n} again indexed in ascending
degrees, such that

d(xi) ⩽ d(x ′
i) fori = 1, 2, . . . ,n.
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Proof. We apply induction to p. When p = 2, the claim is trivially true. Suppose the case holds for all
2 ⩽ i ⩽ k, and we consider the case when i = k+ 1. We pick the vertex with the highest degree v from G

and use the letter N to denote the set of all its neighbors. The induced subgraph ⟨N⟩ must contain no Kp−1,
or otherwise ⟨N ∪ {v}⟩ would contain a Kp. Thus if we apply the inductive hypothesis to ⟨N⟩, we have a
(p− 2)-partite graph Ñ on |N| vertices that satisfies the claim. We connect each of the n− |N| vertices left to
all vertices of Ñ, which we call G ′. G ′ is a (p− 1)-partite graph, and by our choice of v, G ′ meets the claim
desired.

A simply inequality now gives Turán’s theorem. However we do not readily know the exact equality
condition from this approach, which we point out as a drawback.

Proof III of Turán’s theorem. Combine Theorem 8 and Lemma 5, we have

2e(G) =

n∑
i=1

d(xi) ⩽
n∑

i=1

d(x ′
i) = 2e(G ′) ⩽ 2e(Tp−1,n).

[Dir63] mentions a few straightforward results connected to Turán’s theorem. The results in the following
pages are due to him, and we remind that

tk−1(n) =
1

2

(
1−

1

k− 1

)
(n2 − r2) +

(
r

2

)
that will be useful.

THEOREM 9. Let k,n,α be integers such that n ⩾ k+ 1 ⩾ 4 and α ⩽ 1. Any graph on n vertices and at
least tk−1(n) +α number of edges contains at least one subgraph with n ′ vertices and at least tk−1(n

′) +α

edges for every n ′ = k,k+ 1, . . . ,n− 1.

Proof. For the graph with more than tk−1(n) + α edges, we may delete some edges and convert into a
subgraph with exactly tk−1(n) +α edges, which we denote by H.

Let us rewrite n by (k− 1)t+ r, where 1 ⩽ r ⩽ k− 1. Therefore

tk−1(n) =
1

2
(k− 1)(k− 2)t2 + (k− 2)tr+

1

2
r(r− 1), (11)

which gives
tk−1(n) − tk−1(n− 1) = (k− 2)t+ r− 1 = n− t− 1. (12)

We may look at the problem downwards from n− 1 to k. To accomplish this we need to prove the
existence of a vertex with degree less than or equal to n− t− 1, since this will ensure that once this vertex is
removed, the induced subgraph with n− 1 vertices will face the same situation as before.

We will now show that in our setup there exists at least one vertex in H that is of degree ⩽ n− t− 1.
Suppose all vertices are of degree ⩾ n− t. Then we have

e(H) ⩾
1

2
n(n− t) =

1

2
[(k− 1)t+ r][(k− 2)t+ r]

=
1

2
(k− 1)(k− 2)t2 +

1

2
(2k− 3)tr+

1

2
r2,
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which combined with (11) gives us

e(H) − tk−1(n) ⩾
1

2
tr+

1

2
r =

1

2
r(t+ 1).

When t = 1, r ⩾ 2 because (k− 1)t+ r = n ⩾ k+ 1; and when t ⩾ 2, r ⩾ 1. This implies that e(H) −

tk−1(n) ⩾ 2, contradicting the setup that e(H) = tk−1(n) +α ⩽ tk−1(n) + 1.
Therefore there is one vertex of degree ⩽ n− t− 1 in H, which we call x. We may delete this x from H

and obtain the induced subgraph ⟨V(H) − x⟩, which has at least tk−1(n) +α− (n− t− 1) number of edges.
Now by (12), we have

e
(
⟨V(H) − x⟩

)
⩾ tk−1(n− 1) +α,

meaning that H, a subgraph of the original graph, contains a subgraph of order n− 1 and size at least
tk−1(n− 1) +α. We have thus found the desired subgraph with n− 1 number of vertices.

We may now repeat the same steps above and find the desired subgraph with n− 2, n− 3, and all the
way down to k number of vertices.

THEOREM 10. Let k,n,q,α be integers such that k ⩾ 3, 1 ⩽ q ⩽ k− 1,n ⩾ k+ q− 1, and α ⩽ 1. Any
graph Gn with n vertices and at least tk−1(n) +α edges contains one Kk+q−1 with q−α edges missing as
a subgraph.

Proof. Let Gn be a graph with n vertices and tk−1(n) +α edges.
The theorem holds when q = 1 (i.e., n = k). Here tk−1(n) =

1
2k(k− 1) − 1. This shows that the original

graph Gn has at least tk−1(n) =
1
2k(k− 1) − (1−α) edges, meaning exactly that it does contain a subgraph

Kk with 1−α edges missing.
Now consider the case when 2 ⩽ q ⩽ k − 1. By Theorem 9 we know that Gn contains a subgraph

Hk+q−1 with k+ q− 1 vertices and tk(k+ q− 1) +α edges. If we let r = q and t = 1 in (11), we get

tk−1(k+ q− 1) =
1

2
(k− 1)(k− 2) + (k− 2)q+

1

2
q(q− 1)

=
1

2
(k+ q− 1)(k+ q− 2) − q.

Therefore Hk+q−1 contains 1
2 (k+ q− 1)(k+ q− 2) − (q− α) edges, which proves that the subgraph is a

Kk+q−1 with q−α edges missing.

If we replace α by 1 and every q individually by integers between 1 and k− 1, we have an extension
result of Turán’s theorem.

COROLLARY 11. Assume that e(Gn) > tk−1(n), where n ⩾ k ⩾ 3. Then for every q such that 1 ⩽ q ⩽

min{k− 1,n− k+ 1}, Gn contains a Kk, a Kk+1 with 1 edge missing,. . . , and a Kk+q−1 with q− 1 edges
missing.

This gives the final proof of Turán’s theorem, and concludes our expository paper on some fundamental
results of extremal graph theory.

Proof IV [Dir63]. The corollary above tells us that under n ⩾ k ⩾ 3, if Gn does not contain a k-clique, then
e(Gn) ⩽ tk−1(n). This is exactly Turán’s theorem. (Of course the case k = 2 is trivially true.)
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